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Heterogeneous materials abound in nature and man-made situations. Examples include porous media, bio-
logical materials, and composite materials. Diverse and interesting properties exhibited by these materials
result from their complex microstructures, which also make it difficult to model the materials. Yeong and
Torquato �Phys. Rev. E 57, 495 �1998�� introduced a stochastic optimization technique that enables one to
generate realizations of heterogeneous materials from a prescribed set of correlation functions. In this first part
of a series of two papers, we collect the known necessary conditions on the standard two-point correlation
function S2�r� and formulate a conjecture. In particular, we argue that given a complete two-point correlation
function space, S2�r� of any statistically homogeneous material can be expressed through a map on a selected
set of bases of the function space. We provide examples of realizable two-point correlation functions and
suggest a set of analytical basis functions. We also discuss an exact mathematical formulation of the �re�con-
struction problem and prove that S2�r� cannot completely specify a two-phase heterogeneous material alone.
Moreover, we devise an efficient and isotropy-preserving construction algorithm, namely, the lattice-point
algorithm to generate realizations of materials from their two-point correlation functions based on the Yeong-
Torquato technique. Subsequent analysis can be performed on the generated images to obtain desired macro-
scopic properties. These developments are integrated here into a general scheme that enables one to model and
categorize heterogeneous materials via two-point correlation functions. We will mainly focus on basic prin-
ciples in this paper. The algorithmic details and applications of the general scheme are given in the second part
of this series of two papers.

DOI: 10.1103/PhysRevE.76.031110 PACS number�s�: 05.20.�y, 61.43.�j

I. INTRODUCTION

A heterogeneous material �medium� is one that is com-
posed of domains of different materials or phases �e.g., a
composite� or the same material in different states �e.g., a
polycrystal�. Such materials are ubiquitous; examples in-
clude sandstones, granular media, animal and plant tissue,
gels, foams, and concrete. The microstructures of heteroge-
neous materials can only be characterized statistically via
various types of n-point correlation functions �1�. The effec-
tive transport, mechanical, and electromagnetic properties of
heterogeneous materials are known to be dependent on an
infinite set of correlation functions that statistically charac-
terize the microstructure �1�.

Reconstruction of heterogeneous materials from a knowl-
edge of limited microstructural information �a set of lower-
order correlation functions� is an intriguing inverse problem
�2–5�. An effective reconstruction procedure enables one to
generate accurate structures and subsequent analysis can be
performed on the image to obtain macroscopic properties of

the materials; see, e.g., Ref. �6�. This provides a nondestruc-
tive means of estimating the macroscopic properties: a prob-
lem of important technological relevance. Another useful ap-
plication is reconstruction of a three-dimensional structure of
the heterogeneous material using information extracted from
two-dimensional planar cuts through the material �3�. Such
reconstructions are of great value in a wide variety of fields,
including petroleum engineering, biology, and medicine, be-
cause in many cases one only has two-dimensional informa-
tion such as a micrograph or image. Generating realizations
of heterogeneous materials from a set of hypothetical corre-
lation functions is often referred to as a “construction” prob-
lem �2�. A successful means of construction enables one to
identify and categorize materials based on their correlation
functions. One can also determine how much information is
contained in the correlation functions and test realizability of
various types of hypothetical correlation functions. Further-
more, an effective �re�construction procedure can be em-
ployed to investigate any physical phenomena where the un-
derstanding of spatiotemporal patterns is fundamental, such
as in turbulence �1,7�.

A popular �re�construction procedure is based on the use
of Gaussian random fields: successively passing a normal-
ized uncorrelated random Gaussian field through a linear and*torquato@electron.princeton.edu
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then a nonlinear filter to yield the discrete values represent-
ing the phases of the structure. The mathematical back-
ground used in the statistical topography of Gaussian random
fields was originally established in the work of Rice �8,9�.
Many variations of this method have been developed and
applied since then �10–13�. The Gaussian-field approach as-
sumes that the spatial statistics of a two-phase random me-
dium can be completely described by specifying only the
volume fraction and standard two-point correlation function
S2�r�, which gives the probability of finding two points sepa-
rated by vector distance r in one of the phases �1�. However,
to reproduce Gaussian statistics it is not enough to impose
conditions on the first two cumulants only, but also to simul-
taneously ensure that higher-order cumulants vanish �14�. In
addition, the method is not suitable for extension to non-
Gaussian statistics, and hence is model dependent.

Recently, Torquato and co-workers have introduced an-
other stochastic �re�construction technique �2–5,15�. In this
method, one starts with a given, arbitrarily chosen, initial
configuration of a random medium and a set of target func-
tions. The medium can be a dispersion of particlelike build-
ing blocks �15� or, more generally, a digitized image �2–5�.
The target functions describe the desirable statistical proper-
ties of the medium of interest, which can be various correla-
tion functions taken either from experiments or theoretical
considerations. The method proceeds to find a realization
�configuration� in which calculated correlation functions best
match the target functions. This is achieved by minimizing
the sum of squared differences between the calculated and
target functions via stochastic optimization techniques, such
as the simulated annealing method �16�. This method is ap-
plicable to multidimensional and multiphase media, and is
flexible enough to include any type and number of correla-
tion functions as microstructural information. It is both a
generalization and simplification of the aforementioned
Gaussian-field �re�construction technique. Moreover, it does
not depend on any particular statistics �1�.

There are many different types of statistical descriptors
that can be chosen as target functions �1�; the most basic one
is the aforementioned two-point correlation function S2�r�,
which is obtainable from small-angle x-ray scattering �17�.
However, not every hypothetical two-point correlation func-
tion corresponds to a realizable two-phase medium �1�.
Therefore, it is of great fundamental and practical impor-
tance to determine the necessary conditions that realizable
two-point correlation functions must possess �18,19�. Shepp
showed that convex combinations and products of two scaled
autocovariance functions of one-dimensional media �equiva-
lent to two-point correlation functions; see definition below�
satisfy all known necessary conditions for a realizable scaled
autocovariance function �20�. More generally, we will see
that a hypothetical function obtained by a particular combi-
nation of a set of realizable scaled autocovariance functions
corresponding to d-dimensional media is also realizable.

In this paper, we generalize Shepp’s work and argue that
given a complete two-point correlation function space, S2�r�
of any statistically homogeneous material can be expressed
through a map on a selected set of bases of the function
space. We collect all known necessary conditions of realiz-
able two-point correlation functions and formulate a conjec-

ture. We also provide examples of realizable two-point cor-
relation functions and suggest a set of analytical basis
functions. We further discuss an exact mathematical formu-
lation of the �re�construction problem and show that S2�r�
cannot completely specify a two-phase heterogeneous mate-
rial alone, apart from the issue of chirality. Moreover, we
devise an efficient and isotropy-preserving construction algo-
rithm to generate realizations of materials from their two-
point correlation functions. Subsequent analysis can be per-
formed on the generated images to estimate desired
macroscopic properties that depend on S2�r�, including both
linear �1,21–26� and nonlinear �27,28� behavior. These de-
velopments are integrated here into a general scheme that
enables one to model and categorize heterogeneous materials
via two-point correlation functions. Although the general
scheme is applicable in any space dimension, we will mainly
focus on two-dimensional media here. In the second part of
this series of two papers �29�, we will provide algorithmic
details and applications of our general scheme.

The rest of this paper is organized as follows. In Sec. II,
we briefly introduce the basic quantities used in the descrip-
tion of two-phase random media. In Sec. III, we gather all
the known necessary conditions for realizable two-point cor-
relation functions and make a conjecture on a possible nec-
essary condition based on simulation results. In Sec. IV, we
propose a general form through which the scaled autocova-
riance functions can be expressed by a set of chosen basis
functions and discuss the choice of basis functions. In Sec. V,
we formulate the �re�construction problem using rigorous
mathematics and show that S2�r� alone cannot completely
specify a two-phase random medium. Thus, it is natural to
solve the problem by stochastic optimization methods �e.g.,
simulated annealing�. The optimization procedure and the
lattice-point algorithm are also discussed. In Sec. VI, we
provide several illustrative examples. In Sec. VII, we make
concluding remarks.

II. DEFINITIONS OF n-POINT CORRELATION
FUNCTIONS

The ensuing discussion leading to the definitions of the
n-point correlation functions follows closely the one given
by Torquato �1�. Consider a realization of a two-phase ran-
dom heterogeneous material within d-dimensional Euclidean
space Rd. To characterize this binary system, in which each
phase has volume fraction �i �i=1,2�, it is customary to
introduce the indicator function I�i��x� defined as

I�i��x� = �1, x � Vi,

0, x � Vi,
� �1�

where Vi�Rd is the region occupied by phase i and Vi
�Rd is the region occupied by the other phase. The statisti-
cal characterization of the spatial variations of the binary
system involves the calculation of n-point correlation func-
tions

Sn
�i��x1,x2, . . . ,xn� = �I�i��x1�I�i��x2� ¯ I�i��xn�� , �2�

where the angular brackets �¯� denote ensemble averaging
over independent realizations of the random medium.
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For statistically homogeneous media, the n-point correla-
tion function depends not on the absolute positions but on
their relative displacements, i.e.,

Sn
�i��x1,x2, . . . ,xn� = Sn

�i��x12, . . . ,x1n� , �3�

for all n�1, where xij =x j −xi. Thus, there is no preferred
origin in the system, which in Eq. �3� we have chosen to be
the point x1. In particular, the one-point correlation function
is a constant everywhere, namely, the volume fraction �i of
phase i, i.e.,

S1
�i� = �I�i��x�� = �i, �4�

and it is the probability that a randomly chosen point in the
medium belongs to phase i. For statistically isotropic media,
the n-point correlation function is invariant under rigid-body
rotation of the spatial coordinates. For n�d, this implies that
Sn

�i� depends only on the distances xij = 	xij	 �1� i� j�n�. For
n�d+1, it is generally necessary to retain vector variables
because of chirality of the medium.

The two-point correlation function S2
�i��x1 ,x2� defined as

S2
�i��x1,x2� = �I�i��x1�I�i��x2�� , �5�

is one of the most important statistical descriptors of random
media. It also is as the probability that two randomly chosen
points x1 and x2 both lie in phase i. For statistically homo-
geneous media, S2

�i� only depends on relative displacements,
i.e.,

S2
�i��x1,x2� = S2

�i��r� , �6�

where r=x12, For statistically homogeneous and isotropic
media, the two-point function only depends on scalar dis-
tances, i.e., S2

�i��r�, where r= 	r	.
Global information about the surface of the ith phase may

be obtained by ensemble averaging the gradient of I�i��x�.
Since �I�i��x� is different from zero only on the interfaces of
the ith phase, the corresponding specific surface si defined as
the total area of the interfaces divided by the volume of the
medium is given by �1�

si = �	�I�i��x�	� . �7�

Note that there are other higher-order surface correlation
functions which are discussed in detail by Torquato �1�.

The calculation of higher-order correlation functions en-
counters both analytical and numerical difficulties, and very
few experimental results needed for comparison purposes are
available so far. However, their importance in the description
of collective phenomena is indisputable. A possible prag-
matic approach is to study more complex lower-order corre-
lation functions; for instance, the two-point cluster function
C�i��x1 ,x2� defined as the probability that two randomly cho-
sen points x1 and x2 belong to the same cluster of phase i
�30�; or the lineal-path function L�i��x1 ,x2� defined as the
probability that the entire line segment between points x1 and
x2 lies in phase i �31�. C�i��x1 ,x2� and L�i��x1 ,x2� of the re-
constructed media are sometimes computed to study the non-
uniqueness issue of the reconstruction �2–5�.

III. NECESSARY CONDITIONS ON THE TWO-POINT
CORRELATION FUNCTION

The task of determining the necessary and sufficient con-
ditions that S2

�i��r� must possess is very complex. In the con-
text of stochastic processes in time �one-dimensional pro-
cesses�, it has been shown that the autocovariance functions
must not only meet all the necessary conditions we will
present in this section but another condition on “corner-
positive” matrices �32�. Since little is known about corner-
positive matrices, this theorem is very difficult to apply in
practice. Thus, when determining whether a hypothetical
function is realizable or not, we will first check all the nec-
essary conditions collected here and then use the construc-
tion technique to generate realizations of the random me-
dium associated with the hypothetical function as further
verification.

A. Known necessary conditions

Here we collect all of the known necessary conditions on
S2 �1,18–20�. For a two-phase statistically homogeneous me-
dium, the two-point correlation function for phase 2 is sim-
ply related to the corresponding function for phase 1 via the
expression

S2
�2��r� = S2

�1��r� − 2�1 + 1, �8�

and the autocovariance function

��r� 
 S2
�1��r� − �1

2 = S2
�2��r� − �2

2, �9�

for phase 1 is equal to that for phase 2. Generally, for r=0,

S2
�i��0� = �i, �10�

and in the absence of any long-range order

lim
	r	→�

S2
�i��r� → �i

2. �11�

An important necessary condition of realizable S2
�i��r� for

a two-phase statistically homogeneous medium in Rd is that
the d-dimensional Fourier transform of the autocovariance
function ��r�, denoted by �̃�k� must be non-negative for all
wave vectors �1�, i.e., for all k

�̃�k� = �
Rd

��r�e−ik·rdr � 0. �12�

This non-negativity result is sometimes called the Wiener-
Khintchine condition, which physically results since �̃�k� is
proportional to the scattered radiation intensity. The two-
point correlation function must satisfy the following bounds
for all r:

0 � S2
�i��r� � �i, �13�

and the corresponding bounds on the autocovariance func-
tion are given by

− min��1
2,�2

2� � ��r� � �1�2. �14�

A corollary of Eq. �14� recently derived by Torquato �19�
states that the infimum of any two-point correlation function
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of a statistically homogeneous medium must satisfy the in-
equalities

max�0,2�i − 1� � inf�S2
�i��r�� � �i

2. �15�

Another necessary condition on S2
�i��r� in the case of

statistically homogeneous and isotropic media, i.e., when
S2

�i��r� is dependent only the distance r
	r	, is that its deriva-
tive at r=0 is strictly negative for all 0��i�1:

�dS2
�i�

dr
�

r=0
= �d�

dr
�

r=0
� 0. �16�

This is a consequence of the fact that slope at r=0 is propor-
tional to the negative of the specific surface �1�. Taking that
it is axiomatic that S2

�i��	r	� is an even function, i.e., S2
�i��	r	�

=S2
�i��−	r	�, then it is nonanalytic at the origin.
A lesser-known necessary condition for statistically ho-

mogeneous media is the so-called “triangular inequality” that
was first derived by Shepp �20� and later rediscovered by
Matheron �33�

S2
�i��r� � S2

�i��s� + S2
�i��t� − �i, �17�

where r= t−s. Note that if the autocovariance ��r� of a sta-
tistically homogeneous and isotropic medium is monotoni-
cally decreasing, nonnegative and convex �i.e., d2� /d2r�0�,
then it satisfies the triangular inequality �17�. The triangular
inequality implies several pointwise conditions on the two-
point correlation function. For example, for statistically ho-
mogeneous and isotropic media, the triangular inequality im-
plies the condition given by Eq. �16�, the fact that the
steepest descent of the two-point correlation function occurs
at the origin �20�:

��dS2
�i��r�
dr

�
r=0

� �dS2
�i��r�
dr

� , �18�

and the fact that S2
�i��r� must be convex at the origin �34�:

�d2S2
�i�

dr2 �
r=0

= �d2�

dr2 �
r=0

� 0. �19�

Torquato �19� showed that the triangular inequality is ac-
tually a special case of the more general condition



i=1

m



j=1

m

�i� j��ri − r j� � 1, �20�

where �i= ±1 �i=1, . . . ,m and m is odd�. Note that by choos-
ing m=3; �1�2=1, �1�3=�2�3=−1, Eq. �17� can be rediscov-
ered. If m=3; �1�2=�1�3=�2�3=1 are chosen instead, an-
other “triangular inequality” can be obtained, i.e.,

S2
�i��r� � − S2

�i��s� − S2
�i��t� + �4�i

2 − �i� , �21�

where r= t−s. Equation �21� was first derived by Quintanilla
�35�.

Equation �20� is a much stronger necessary condition that
implies that there are other necessary conditions beyond
those identified thus far. However, Eq. �20� is difficult to
check in practice, because it does not have a simple spectral
analog. One possible method is to randomly generate a set of

m points and compute the value of �ij =��ri−r j�. Among
these values of �ij, select the largest m ones and set their
coefficients �i� j equal to −1. Thus, we have m equations for
m �i’s. Then we can substitute the solved �i’s into Eq. �20�
and check the inequality. If the inequality holds, then we can
generate several different sets of random points and test the
inequality in the same way.

B. Conjecture on a necessary condition

In addition to the aforementioned explicit necessary con-
ditions, we find in two-dimensional simulations that the
value of the second peak of a nonmonotonic S2�r� for a sta-
tistically homogeneous and isotropic two-dimensional me-
dium is never larger than that of the medium composed of
circular disks on a triangular lattice at fixed volume frac-
tions, i.e.,

S2
�i��rp;�i� � S2

�i��rp�;�i�tri, �22�

where rp and rp� denote the positions of the second peak for
the two media, respectively and the superscript “tri” denotes
the medium composed of disks on a triangular lattice. A
hypothetical damped-oscillating two-point correlation func-
tion with an artificially higher second peak than that of the
medium composed of disks on a triangular lattice at fixed
volume fractions was tested by the construction algorithm.
The results in Fig. 1 show that the structure for which S2

B �“
B” denotes the black phase� best matches the target function
indeed has its “particles” arranged on triangular lattice while
the second peak of the target function still cannot be reached.

Here we make the conjecture that for any d-dimensional
statistically homogeneous and isotropic medium with a two-
point correlation function S2�r� that is nonmonotonic in r, the
value of the first peak of its S2

�i��r� away from the origin is
bounded from above by the value of the first peak of the
two-point correlation function associated with the densest
packings of d-dimensional identical hard spheres at fixed a
volume fraction, i.e.,

S2
�i��rp;�i� � S2

�i��rp�;�i�CPS, �23�

where the superscript “CPS” denotes closest packings of
spheres, for the first three dimensions. They are the regular
array of hard rods, hard disks on triangular lattice, and hard
spheres on face-centered cubic lattice, respectively. For d
=4 and d=5, the densest packings are believed to be four-
and five-dimensional checkerboard lattice packings, respec-
tively �36�. Note that this conjectured condition could be a
corollary of Eq. �20� or some other unknown necessary con-
ditions.

IV. MODELING TWO-POINT CORRELATION
FUNCTION VIA BASIS FUNCTIONS

A. Combination of realizable two-point correlation functions

It is first shown by Shepp �20� that the convex combina-
tion and product of two realizable scaled autocovariance
functions for one-dimensional statistically homogeneous me-
dia satisfy all known necessary conditions, i.e.,
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fc�r� = 	1f1�r� + 	2f2�r� , fp�r� = f1�r�f2�r� , �24�

where 0�	i�1 �i=1,2�, 	1+	2=1 and the superscripts “c”
and “p” denote “combination” and “product,” respectively.
The scaled autocovariance function f�r� of a statistically ho-
mogeneous material is defined as �19�

f�r� 

��r�
�1�2

=
S2

�i��r� − �i
2

�1�2
. �25�

The necessary conditions for realizable scaled autocova-
riance function f�r� can be obtained from Eq. �25� and the
equations by which the necessary conditions for realizable
two-point correlation function S2

�i��r� are given. From Eqs.
�17� and �21�, we can obtain the triangular inequalities for
f�r�, respectively,

f�r� � f�s� + f�t� − 1, �26�

f�r� � − f�s� − f�t� − 1. �27�

Moreover, the bounds of f�r� become

− min��1

�2
,
�2

�1
� � f�r� � 1, �28�

and the corollary Eq. �15� is equivalent to

− min��1

�2
,
�2

�1
� � f inf � 0, �29�

where f inf is the infimum of f�r�. Our focus in this paper will
be hypothetical continuous functions f�r� that are dependent
only on the scalar distance r= 	r	 which could potentially
correspond to statistically homogeneous and isotropic media
without long range order, i.e.,

f�0� = 1, lim
r→�

f�r� → 0. �30�

f�r� is also absolutely integrable so that the Fourier trans-
form of f�r� exists and is given by

f̃�k� = �2
�d/2�
0

�

rd−1f�r�
J�d/2�−1�kr�

�kr��d/2�−1 dr � 0, �31�

where k= 	k	 and Jv�x� is the Bessel function of order v.
Generalization of Eq. �24� to higher dimensions is

straightforward. Suppose f i�r� �i=1, . . . ,m� are the scaled
autocovariance functions for d-dimensional statistically ho-
mogeneous and isotropic media, then the convex combina-
tion fc�r� and product fp�r� defined as

fc�r� = 

i=1

m

	i f i�r� , fp�r� = �
i=1

m

fi�r� , �32�

satisfy all known necessary conditions, where 0�	i�1 �i
=1, . . . ,m� and 
i=1

m 	i=1. Equation �32� is of great funda-
mental and practical importance. On the one hand, it enables
us to construct realizable two-point correlation functions
with properties of interest, corresponding to structures of in-
terest, from a set of known functions. Thus, one can catego-
rize microstructures with the set of known functions and the
proper combinations. On the other hand, suppose that we can
find a “full” set of those basis scaled autocovariance func-
tions �f i�r��i=1

m , then the scaled autocovariance function of
any statistically homogeneous and isotropic medium can be
expressed in term of the combinations of the basis functions,
i.e.,

f�r� = ���f i�r��i=1
m � 
 ��f1�r�, f2�r�, . . . , fm�r�� , �33�

where � denotes a map composed of convex combinations
and products of �f i�r��i=1

m . For example, for m=5, a possible
explicit form for � is

���f i�r��i=1
5 � = 	1f1�r� + 	2��1f2�r� + �2f3�r��

+ 	3�f4�r�f5�r�� , �34�

where 0�	i, � j �1 and 
i	i=
 j� j =1 �i=1,2 ,3 ; j=1,2�.
Once the scaled autocovariance function �or equivalently the
two-point correlation function� of a medium is known, an
effective reconstruction procedure enables one to generate
accurate structures at will, and subsequent analysis can be
performed on the image to obtain desired macroscopic prop-
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FIG. 1. Numerical support of the conjecture: �a� Two-point cor-
relation functions of black phase for hypothetical and constructed
medium. �b� Constructed medium for which S2

B best matches the
target one. The linear size of the system N=200 �pixels�, volume
fraction of black pixels �1=0.227.

MODELING HETEROGENEOUS MATERIALS VIA TWO-… PHYSICAL REVIEW E 76, 031110 �2007�

031110-5



erties of the medium. In other words, the medium is actually
modeled by a set of basis scaled autocovariance functions
�f i�r��i=1

m and a particular map ���f i�r��i=1
m �. There could be

different choices of the basis functions �like different basis
choices of a Hilbert space�, and we would like the basis
functions to have nice mathematical properties, such as
simple analytical forms. Let �f i

0�r��i=1
m denote our choice of

the basis functions. Thus, the media can be represented
merely by different maps �0’s. Note that a hypothetical two-
point correlation function corresponds to a hypothetical map
�h

0 and effective construction algorithms can be used to test
the realizability of �h

0.

B. Choice of basis functions

A systematic way of determining the basis functions
�f i

0�i=1
m is not available yet. Here we take the first step to

determine the bases by considering certain known realizable
analytical two-point correlation functions and the corre-
sponding scaled autocovariance functions. For convenience,
we categorize these functions into three families: �i� mono-
tonically decreasing functions, �ii� damped-oscillating func-
tions, and �iii� functions of known constructions.

The family of monotonically decreasing functions in-
cludes the simple exponentially decreasing function intro-
duced by Debye �17� and polynomial functions. The former
is given by

fD�r� = exp�− r/a�, r � 0, �35�

where a is a correlation length, corresponding to structures in
which one phase consists of “random shapes and sizes”
�17,37� �shown in Fig. 2�. It is now known that certain types
of space tessellations have autocovariance functions given by
Eq. �35� �38�. We have referred to this class of structures as
Debye random media �1,2�.

Another example of monotonically decreasing functions
is the family of polynomials of order n �n�1� given by

fP
n �r� = ��1 − r/a�n, 0 � r � a ,

0, r � a ,
� �36�

where a is the correlation length. The polynomial function of
order 1 is shown to be realizable only for a statistically ho-
mogeneous two-phase medium in one dimension �19,20�. We
have constructed realizations of random media in dimensions
d�n that correspond to the polynomial function of order n
with very high numerical precision using the Yeong-Torquato
construction technique �2�. However, for dimensions higher
than n, Eq. �36� violates Eq. �31�. We will henceforth assume
that the polynomial functions of order n are realizable in
dimensions d�n.

An example of the family of damped-oscillating functions
is given by �2,19�

fO�r� = 

i

Ai exp�− r/ai�cos�qir + 
i�, r � 0, �37�

where the parameters Ai and ai �i=1,2 , . . . � control the am-
plitude of the fO profile, qi is the wavenumber, and 
i is the
phase angle The form of �37� could be further generalized by

changing the variable of cosine functions from a linear func-
tion of r to a more general monotonically increasing function
of r in order to capture more complex local microstructural
features. Note that qi and 
i need to be carefully chosen such
that fO�r� satisfies all known necessary conditions.

The family of functions of known constructions includes
scaled autocovariance functions of d-dimensional identical
overlapping spheres �1,39� and symmetric-cell materials �see
Fig. 3� �1,40�. For overlapping spheres of radius R, the
scaled autocovariance function for the particle phase
�spheres� is given by

fS�r� =
exp�− �v2�r;R�� − �1

2

�1�2
, �38�

where �1 and �2 are volume fractions of the spheres and
matrix, respectively, �=N /V is the number density of
spheres and v2�r ;R� is the union volume of two spheres of
radius R whose centers are separated by r. For the first three
space dimensions, the latter is, respectively, given by

v2�r;R�
v1�R�

= 2��r − 2R� + �1 +
r

2R
���2R − r� , �39�
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FIG. 2. �a� Debye random medium function fD�r� with a=5. �b�
A realization of Debye random media with the volume fractions
�1=0.68, �2=0.32.
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v2�r;R�
v1�R�

= 2��r − 2R� +
2



�
 +

r

2R
�1 −

r2

4R2�1/2

− cos−1� r

2R
����2R − r� , �40�

v2�r;R�
v1�R�

= 2��r − 2R� + �1 +
3r

4R
−

1

16
� r

R
�3���2R − r� ,

�41�

where ��x� is the Heaviside function and v1�R� is the vol-
ume of a d-dimensional sphere of radius R given by

v1�R� =

d/2

��1 + d/2�
Rd, �42�

where ��x� is the gamma function. For d=1, 2, and 3,
v1�R�=2R, 
R2, and 4
R3 /3, respectively.

Two-phase symmetric-cell materials are constructed by
partitioning space into cells of arbitrary shapes and sizes,
with cells being randomly designated as phase 1 and 2 with

probability �1 and �2 from a uniform distribution �1�. For
such a statistically homogeneous and isotropic medium, the
scaled autocovariance function is given by

fC�r� = W2
�1��r� , �43�

where W2
�1��r� is the probability that two points separated by

distance r are in the same cell. This quantity is only a func-
tion of cell shapes and sizes, depending on a dimensionless
size-averaged intersection volume of two cells defined by

W2
�1��r� =

�v2
int�r;R��R

�v1�r��R
, �44�

where R is the size parameter for each cell, �v2
int�r ;R��R is the

size-averaged intersection volume of two cells whose centers
are separated by r, and �v1�r��R is the size-averaged single-
cell volume. The random checkerboard is a very useful
model of symmetric-cell material because its fC�r� is known
analytically for d=1 and 2 �1� �see Fig. 4�. For d=1, it is
easy to verify that the probability of finding two points in the

0 5 10 15 20 25 30
r

0

0.2

0.4

0.6

0.8

1
f S(r

)

(a)

(b)

FIG. 3. �a� Scaled autocovariance function fS�r� of two-
dimensional identical overlapping disks with volume fractions �1

=0.45, �2=0.55. �b� A realization of two-dimensional identical
overlapping disks with volume fractions �1=0.45, �2=0.55. The
radius of disks R=5.
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FIG. 4. �a� Scaled autocovariance function fC�r� of two-
dimensional random checkerboard. �b� A realization of two-
dimensional random checkerboard. The length of the cells a=10.
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same one-dimensional cell is given by

W2
�1��r� = �1 − r/a , 0 � r � a ,

0, r � a ,
� �45�

where a is the length of the side of a square cell. Note that
Eq. �45� is just the polynomial function of order one �see Eq.
�36�� for one-dimensional statistically homogeneous media.

For d=2, W2
�1��r� is given by

W2
�1��r� =�1 +

1



�� r

a
�2

− 4� r

a
�� , 0 � r � a ,

1 −
1



�2 + � r

a
�2� +

4



��� r

a
�2

− 1 − cos−1�a

r
�� , a � r � �2a ,

0, r � �2a .
� �46�

For d=3, W2
�1��r� is given by

W2
�1��r� =

2



�

0


/2 �
0


/2

W�r,�,��sin �d�d� , �47�

where

W�r,�,�� = �1 − r cos ���1 − r sin � sin ���1 − r sin � cos ��

� ��1 − r cos ����1 − r sin � sin ��

���1 − r sin � cos �� . �48�

Note that W2
�1��r� for d=3 does not have a simple analytical

form.
There are some other known scaled autocovariance func-

tions for different types of materials �e.g., d-dimensional
identical hard spheres �1�� and realizable hypothetical func-
tions �e.g., complementary error function, see the Appendix�.
However we do not include these functions in our basis func-
tion set because they do not have simple analytical math-
ematical forms. Note that some of the basis functions are
dimension-dependent �e.g., fO and fC�, and thus the proper
forms of basis functions should be used for different dimen-
sions. In the following discussion, without further specifica-
tion, we will focus on two-dimensional cases.

V. GENERATING REALIZATIONS OF
HETEROGENEOUS MATERIALS

Consider a digitized �i.e., pixelized� representation of a
heterogeneous material. Different colored pixels �in a dis-
crete coloring scheme� may have numerous interpretations.
The image can reflect different properties, such as the geom-
etry captured by a photographic image, topology of tempera-
ture and scalar velocity fields in fluids, distribution of mag-
nitudes of electric and magnetic fields in the medium, or
variations in chemophysical properties of the medium. In the
last case, typical examples are composite materials in which
the different phases may have different thermal, elastic or
electromagnetic properties, to name a few.

A. Exact equations for digitized media

Our focus in this paper is two-dimensional, two-phase
statistically homogeneous and isotropic random media com-
posed of black and white pixels. Such a system can be rep-
resented as a two-dimensional array, i.e.,

I = �
I11 I12 . . . I1N

I21 I22 . . . I2N

] � ]

IN1 IN2 . . . INN

� , �49�

where the integer N categorizes the linear size of the system
�N2 is the total number of pixels in the system� and the en-
tries Iij �i , j=1, . . . ,N� can only take the value of 0 or 1,
which correspond to the white and black phases, respec-
tively. Note that Eq. �49� is only an abstract representation
and the real morphological configuration of the medium also
depends on the choice of lattices. For example, as shown in
Fig. 5, the isotropic medium composed of overlapping disks
generated on a square lattice and the anisotropic medium
composed of orientated ellipses generated on a triangular lat-
tice have the same array presentation. A vector distance in
the digitized medium can be uniquely expressed as

r = n1e1 + n2e2, �50�

where e1 and e2 are lattice vectors for the particular lattice
and n1, n2 are integers. For example, for square lattice, e1
= i, e2= j, where i, j are unit vectors along horizontal and
vertical directions, respectively; while for triangular lattice
e1=�3i+ j /2, e2= j. Note that other lattices can be used
whose symmetry is consistent with the particular anisotropy
of the media.

Without loss of generality, we choose the black phase to
be the phase of interest and assume that a periodic boundary
condition is applied, which is commonly used in computer
simulations. The two-point correlation function S2�r� of the
black phase can be calculated based on its probabilistic na-
ture, i.e., the probability of finding two points separated by
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the vector distance r in the same phase. The value of two-
point correlation function for a particular r=n1e1+n2e2 is
given by

S2�r� 
 S2�n1,n2� =



i=1

N



j=1

N

IijI�i+n1��j+n2�

N2 , �51�

where Iij are entries of I defined in Eq. �49�, n1 and n2 are
integers satisfying 	n1	 , 	n2	� �N /2� due to minimum image
distance convention. For statistically isotropic media, the
two-point correlation function only depends on the magni-
tude of r, i.e., r
	r	, thus we have

S2�r� =



�m,n���

�

i=1

N



j=1

N

IijI�i+m��j+n��
�N2 , �52�

where

� = ��m,n�	m2 + n2 = r2,r � �N/2�� , �53�

and � is the number of elements of set �.
It is well known that the two-point correlation function

cannot completely specify a two-phase heterogeneous mate-
rial alone. Here, we provide a proof of this statement for
two-dimensional statistically homogeneous digitized media.
Note that the proof trivially extends to any dimension. Sup-
pose we already know the value of S2�r� for every vector
distance r, using Eq. �51�, we can obtain a set for equations
of Iij, i.e., for each r=n1e1+n2e2



i=1

N



j=1

N

IijI�i+n1��j+n2� − N2S2�n1,n2� = 0. �54�

Since the digitized medium is represented by I, once we
obtain all the entries Iij �the unknowns in Eq. �54��, the me-
dium is �re�constructed. In Eq. �54�, the number of un-
knowns Nu equals N2 and the number of equations Ne equals
the number of all possible vector distances in the digitized
medium. To calculate Ne, all possible different combinations
of integers n1 and n2 subjected to 	n1	 , 	n2	� �N /2� need to be
considered. This quantity is given by Ne=4�N /2�2−8�N /2�
+6, which is smaller than the number of unknowns Nu=N2

for normal-sized systems �i.e., N=10–103�.
Similar proof is applied to the case when we average over

the angles of vector r to yield S2�r� that depends only on the
radial distance r. The angle-averaged equations of Iij are
given by



�m,n���

�

i=1

N



j=1

N

IijI�i+m��j+n�� − �N2S2�r� = 0, �55�

where � is given by Eq. �53�. The number of equations is
even smaller for the angle-averaged case, while the number
of unknowns does not change. The analysis shows that one
could never find a unique solution of Iij from either Eq. �54�
or Eq. �55� unless some assumptions have been made that
reduce Nu such that Nu=Ne. For example, in an interesting
model to study spatial distribution of algae, the algae are put
on top of each other in order to reduce the unknowns �41�. In
general cases, one could use the stochastic optimization pro-
cedure �i.e., simulated annealing� �2,16� to find solutions of
Eqs. �54� and �55�. Note that although the aforementioned
proofs focus on two-dimensional media, they trivially extend
to any dimensions �e.g., d=1,3�.

B. Stochastic optimization procedure

Generally, consider a given set of correlation functions
fn

	�r1 ,r2 , . . . ,rn� of the phase of interest that provides partial
information on the random medium. The index 	 is used to
denote the type of correlation functions. Note that the set of
fn

	 should not be confused with the basis function set �; the
former contains correlation functions of different type, i.e.,
two-point correlation function, lineal-path function, two-
point cluster function, etc., while the latter contains basis
functions through which the scaled autocovariance function
of the medium of interest can be expressed. The information
contained in fn

	 could be obtained either from experiments or
it could represent a hypothetical medium based on simple
models. In both cases we would like to generate the under-
lying microstructure with a specified set of correlation func-
tions. In the former case, the formulated inverse problem is
frequently referred to as a “reconstruction” procedure, and in
the latter case as a “construction.”

As we have noted earlier, it is natural to formulate the
construction or reconstruction problem as an optimization
problem �2–5�. The discrepancies between the statistical
properties of the best generated structure and the imposed
ones is minimized. This can be readily achieved by introduc-

(a)

(b)

FIG. 5. Different digitized media with the same array represen-
tation. �a� Overlapping disks generated on square lattice with a
square unit cell. �b� Orientated overlapping ellipses generated on
triangular lattice with a rhomboidal unit cell.

MODELING HETEROGENEOUS MATERIALS VIA TWO-… PHYSICAL REVIEW E 76, 031110 �2007�

031110-9



ing the “energy” function E defined as a sum of squared
differences between target correlation functions, which we

denote by f̂ n
	, and those calculated from generated structures,

i.e.,

E = 

r1,r2,. . .,rn



	

�fn
	�r1,r2, . . . ,rn� − f̂ n

	�r1,r2, . . . ,rn��2.

�56�

Note that for every generated structure �configuration�, there
is a set of corresponding fn

	. If we consider every structure
�configuration� as a “state” of the system, E can be consid-
ered as a function of the states. The optimization technique
suitable for the problem at hand is the method of simulated
annealing �16�. It is a popular method for the optimization of
large-scale problems, especially those where a global mini-
mum is hidden among many local extrema. The concept of
finding the lowest energy state by simulated annealing is
based on a well-known physical fact: If a system is heated to
a high temperature T and then slowly cooled down to abso-
lute zero, the system equilibrates to its ground state. At a
given temperature T, the probability of being in a state with
energy E is given by the Boltzmann distribution P�E�
�exp�−E /T�. At each annealing step k, the system is al-
lowed to evolve long enough to thermalize at T�k�. The tem-
perature is then lowered according to a prescribed annealing
schedule T�k� until the energy of the system approaches its
ground state value within an acceptable tolerance. It is im-
portant to keep the annealing rate slow enough in order to
avoid trapping in some metastable states.

In our problem, the discrete configuration space includes
the states of all possible pixel allocations. Starting from a
given state �current configuration�, a new state �new configu-
ration� can be obtained by interchanging two arbitrarily se-
lected pixels of different phases. This simple evolving pro-
cedure preserves the volume fraction of all involved phases
and guarantees ergodicity in the sense that each state is ac-
cessible from any other state by a finite number of inter-
change steps. However, in the later stage of the procedure,
biased and more sophisticated interchange rules, i.e., surface
optimization, could be used to improve the efficiency. We
choose the Metropolis algorithm as the acceptance criterion:
the acceptance probability P for the pixel interchange is
given by

P�Eold → Enew� = �1, �E � 0,

exp�− �E/T� , �E � 0,
� �57�

where �E=Enew−Eold. The temperature T is initially chosen
so that the initial acceptance probability for a pixel inter-
change with �E�0 averages approximately 0.5. An inverse
logarithmic annealing schedule which decreases the tempera-
ture according to T�k��1/ ln�k� would in principle evolve
the system to its ground state. However, such a slow anneal-
ing schedule is difficult to achieve in practice. Thus, we will
adopt the more popular and faster annealing schedule
T�k� /T�0�=�k, where constant � must be less than but close
to one. This may yield suboptimal results, but, for practical
purposes, will be sufficient. The convergence to an optimum

is no longer guaranteed, and the system is likely to freeze in
one of the local minima if the thermalization and annealing
rate are not adequately chosen.

The two-point correlation function of a statistically homo-
geneous and isotropic medium is the focus of this paper. In
this case, Eq. �56� reduces to

E = 

i

�S2�ri� − Ŝ2�ri��2. �58�

Since for every configuration �structure�, the corresponding
two-point correlation function needs to be computed, the ef-
ficiency of the construction or reconstruction is mainly de-
termined by the efficiency of the S2-sampling algorithm. Fur-
thermore, the properties of generated configurations �struc-
tures�, i.e., isotropy of the medium, are also affected by the
S2-sampling algorithm. One of the most commonly used and
efficient S2-sampling algorithms is the orthogonal-sampling
algorithm introduced by Yeong and Torquato �2,3�. Due to
the isotropic nature of the medium, every sampling direction
should be equivalent. For simplicity, two orthogonal direc-
tions �usually the horizontal and vertical directions of a
square lattice� are chosen and the two-point correlation func-
tion is sampled along these directions and averaged. At each
pixel interchange, only the values of S2�r� sampled along the
rows and columns that contain the interchange pixels are
changed. Thus, the complexity of the algorithm is O�N�,
where N is the linear size of the system. However, for certain
media with long-range correlations, the generated media
have microstructures with two orthogonal anisotropic direc-
tions due to the biased sampling. Modifications of the
orthogonal-sampling algorithm to preserve the isotropy of
the underlying medium have been proposed, such as adding
more sampling directions and using more isotropic lattices
�4,5�. Cule and Torquato introduced a new isotropy-
preserving fast Fourier transform �FFT� algorithm �4�. At
each pixel interchange step, the two-point correlation func-
tion S2�r� containing angle information is calculated in mo-
mentum space using an efficient FFT algorithm. Since infor-
mation of all directions is considered, the generated media
always have the required isotropy structures. However, since
the complexity of FFT is O�N log2 N�, the algorithm is rela-
tively time consuming.

We have developed an efficient and isotropy-preserving
algorithm, namely, the lattice-point algorithm by considering
the black pixels as hard “particles” on a particular lattice.
The two-point correlation function is then computed in a
similar way of obtaining the pair correlation function g2�r�
for an isotropic point process �1�. At each Monte Carlo step,
the randomly selected “particle” �black pixel� is given a ran-
dom displacement subjected to the nonoverlapping constraint
and the distances between the moved “particle” and all the
other “particles” need to be recomputed. Thus the complex-
ity of the algorithm is O�N�. Since all directions are effec-
tively sampled, constructions based on the angle-averaged
S2�r� will preserve isotropy of the media. A detailed discus-
sion and applications of the algorithm will be included in the
second paper of this series �29�. In this paper, we only pro-
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vide several illustrative examples generated from this algo-
rithm.

VI. ILLUSTRATIVE EXAMPLES

As illustrative examples, we use the aforementioned
�re�construction techniques to investigate both deterministic,
crystal-like structures, and random systems. We also study a
hypothetical medium with the two-point correlation function
obtained from convex combination of known ones. In the
case of completely deterministic structures, the algorithm
produces almost perfect reconstructions. However, the opti-
mization of disordered structures is significantly harder. Fur-
thermore, we will see that for the media with long-range
correlations, e.g., a damped-oscillating S2�r�, the orthogonal-
sampling algorithm may produce unexpected anisotropy,
while the lattice-point algorithm well preserves isotropy of
the media.

A. Regular array of nonoverlapping disks

First, we consider specific two-dimensional and two-
phase structure composed of a square array of nonoverlap-
ping disks, as shown in Fig. 6. This morphology may be
viewed as a cross section of two-phase materials containing
rodlike or fiberlike inclusions. Various transport properties of
these materials have been well explored because of their
practical and theoretical importance in materials science
�42�.

The regular structure is discretized by introducing an N
�N square lattice. The volume fractions of black and white
phases are �1=0.326, �2=0.674, respectively. The target
two-point correlation of the digitized medium is sampled us-
ing both the orthogonal and the lattice-point algorithm for
comparison purpose. The simulations start from random ini-
tial configurations �i.e., random collections of black and
white pixels�, at some initial temperature T0, with fixed vol-
ume fractions �i. At each Monte Carlo �MC� step, when an
attempt to exchange two randomly chosen pixels with differ-
ent colors �or to randomly displace a chosen black pixel� is
made, S2�r� is efficiently recomputed by using the
orthogonal-sampling algorithm �or the lattice-point algo-
rithm�. The set of constants ��MC,�tot ,�� specifies the an-
nealing schedule: At each temperature, the system is thermal-

ized until either �MCN2 MC moves are accepted or the total
number of attempts to change the original configurations
reaches the value �totN

2. Subsequently, the system tempera-
ture is decreased by the reduction factor �, i.e., Tnew=�Told.

The reconstruction results are shown in Fig. 7. Both of the
algorithms are able to reproduce the exact global square-
array arrangement of clusters of black pixels. This implies
that the two-point correlation function of regular configura-
tions contains enough structural information to properly
characterize the long-range correlations. However, it is clear
that the structure generated by the lattice-point algorithm has
a better local arrangement of the pixels �i.e., the shape of the
particles� than that generated by the orthogonal-sampling al-
gorithm. This is because the orthogonal algorithm only uses
structural information along two directions, which is not suf-
ficient to reproduce detailed local structures, while the
lattice-point algorithm efficiently uses information along all
possible directions.

B. Hypothetical random media with long-range correlations

In this example, we will generate two-dimensional statis-
tically homogeneous and isotropic random media with long-
range correlations �i.e., nontrivial interparticle interactions�.
Examples of this type of media include low-density fluids
and amorphous materials �i.e., porous media, randomly po-
lymerized plastics, glass, etc.�. A meaningful, yet nontrivial,
two-point correlation function capturing these features is
�4,5,19�

FIG. 6. A realization of square array of nonoverlapping disks.
The linear size of the system N=200 pixels, volume fraction of
black pixels �1=0.326.

(a)

(b)

FIG. 7. Reconstructed structures. �a� Square array of almost
circular particles generated by the lattice-point algorithm. �b�
Square array of particles generated by the orthogonal-sampling
algorithm.
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Ŝ2�r� = �1
2 + �1�2e−r/r0

sin�kr�
kr

, �59�

where k=2
 /a0. Here r0 and a0 are two characteristic length
scales. The overall exponential damping is controlled by the
correlation length r0, determining the maximum correlations
in the system. The constant a0 determines oscillations in the
term sin�kr� / �kr� which also decays with increasing r, such
that a0 can reduce the effective range of r0. Interestingly, this
hypothetical function is not exactly realizable, because it vio-
lates the convexity condition Eq. �19� at the origin, or more
generally the triangular inequality Eq. �17�. However, we
mainly focus on its damped-oscillating property and we will
see that the algorithms are robust enough to detect violation
of the convexity condition.

For comparison purposes, both the orthogonal-sampling
algorithm and the lattice-point algorithm are used in the con-
struction, the results are shown in Fig. 8. At a lower density
of the black phase �1, a0 is manifested as a characteristic
repulsion among different elements with diameter of order
a0. The repulsion vanishes beyond the length scale r0. At a
higher density, both length scales a0 and r0 are clearly no-
ticeable in the distribution of the black and white phases.
Note that the structures generated by the orthogonal-
sampling algorithm exhibit some anisotropy features, i.e.,
containing stripes along ±45° directions, which implies that
the orthogonal-sampling algorithm should be used with care

in the case where the medium has long-range correlations.

The target two-point correlation function Ŝ2�r� for �1

=0.2 and S2�r� sampled from generated structures are shown

in Fig. 9. It can be seen clearly that Ŝ2�r� is nonconvex at the

origin and the largest discrepancies between S2�r� and Ŝ2

occur around the origin because S2�r� satisfies Eq. �19�. This
implies that our algorithms are robust enough and can be
used to test realizability of hypothetical functions. Note that
the following classes of functions �19�:

f�r� = exp�− � r

a
�	�, 	 � 1 �60�

and

f�r� =
1

�1 + �r/a�2��−1 , � � d �61�

cannot correspond to a two-phase medium in d dimensions
also because they also violate the triangular inequality �26�.

C. Hypothetical random media with realizable
correlation functions

In this last example, we study a hypothetical statistically
homogeneous and isotropic medium whose scaled autocova-
riance function is a convex combination of Debye random
medium function fD�r� �cf. Eq. �35�� and damped-oscillating
function fO�r� �cf. Eq. �37��, i.e.,

f�r� = 	1fD�r� + 	2fO�r� , �62�

where 	1+	2=1. We use the one-term version of fO�r� here;
the parameter a in fD is a=20 �pixels� and the parameters in
f0 are A1=1, Ai=0 �i�1�, a1=5 �pixels� and q1=10 �pixels�.
Since both fD�r� and fO�r� are independent of volume frac-
tions, the medium with scaled autocovariance function f�r�
has phase-inversion symmetry �1�, i.e., the morphology of
phase 1 at the volume fraction �1 is statistically identical to

(a1)

(b2)(b1)

(a2)

FIG. 8. �a� Media with Ŝ2�r� given by Eq. �59� generated by the
orthogonal-sampling algorithm. Left panel, volume fraction of
black pixels �1=0.2. Right panel, volume fraction of black pixels
�1=0.5. The linear size of the systems N=200. �b� Media with

Ŝ2�r� given by Eq. �59� generated by the lattice-point algorithm.
Left panel, volume fraction of black pixels �1=0.2. Right panel,
volume fraction of black pixels �1=0.5. The linear size of the sys-
tems N=200.
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FIG. 9. Target two-point correlation function given by Eq. �59�
and that of constructed media with volume fraction �1=0.2.
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that of phase 2 when the volume fraction of phase 1 is 1
−�1. �For such media, “phase-interchange” relations for the
effective properties �43� can prove to be useful.�

Different constant pairs �	1 ,	2� can be used to construct
f�r� with required properties. In particular, we choose two
pairs �0.25, 0.75� and �0.75, 0.25�. The construction results
obtained by application of the lattice-point algorithm are
shown in Figs. 10 and 11 and Figs. 12 and 13. For 	1
=0.25, 	2=0.75, fO�r� is dominant in the combination. At
lower densities, the generated structures resemble those with
“pure” damped-oscillating two-point functions, i.e., disper-
sions of particles, although they contain more clusters. At
higher densities, some stripe-like structures and several �al-
most equal-sized� clusters can be identified. For 	1=0.75,
	2=0.25, fD�r� is dominant in the combined f�r�. Clusters
with considerable sizes form even at low densities, which is
a consequence of the large effective correlation length in
fD�r�. However, no stripelike structures can be identified in
the generated structures, since the oscillating feature of fO�r�
is significantly suppressed by its exponentially damping part
and the small value of 	1. The results imply that even a
simple combination of two basis functions enables one to
obtain scaled autocovariance functions with properties of in-
terest and to generate a variety of structures with controllable
morphological features, e.g., local “particle” shape and clus-
ter size.

VII. CONCLUSIONS

In this paper, we have provided a general rigorous scheme
to model and categorize two-phase statistically homogeneous
and isotropic media. In particular, given a set of basis func-
tions, we have shown that the medium can be modeled by a
map � composed of convex combination and product opera-
tions. The basis functions should be realizable but, if they are
not, they should at least satisfy all the known necessary con-

ditions for a realizable autocovariance function. We have
gathered all the known necessary conditions and made a con-
jecture on a possible new condition based on simulation re-
sults. A systematic way of determining basis functions is not
available yet. We proposed a set of basis functions with
simple analytical forms that capture salient microstructural
features of two-phase random media.

We gave a rigorous mathematical formulation of the
�re�construction problem and showed that the two-point cor-
relation function alone cannot completely specify a two-
phase heterogeneous material. Moreover, we devised an ef-
ficient and isotropy-preserving �re�construction algorithm,
namely, the lattice-point algorithm to generate realizations of
materials based on the Yeong-Torquato technique. We also
provided an example of nonrealizable yet nontrivial two-
point correlation function and showed that our algorithm can
be used to test realizability of hypothetical functions. An
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FIG. 10. Combined scaled autocovariance function f�r� accord-
ing to Eq. �62� with coefficients 	1=0.25, 	2=0.75. Here a=20
�pixels�, A1=1, Ai=0�i�1�, a1=5 �pixels�, q1=10 �pixels�.

(a)

(b)

(c)

FIG. 11. Constructed media with scaled autocovariance function
shown in Fig. 10. �a� Volume fraction of black pixels �1=0.1. �b�
Volume fraction of black pixels �1=0.3. �c� Volume fraction of
black pixels �1=0.5. The linear size of the systems N=200.
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example of generating hypothetical random media with com-
bined realizable correlation functions was given as an appli-
cation of our general scheme. We showed that even a simple
combination of two basis functions enables one to produce
media with a variety of microstructures of interest and there-
fore a means of categorizing microstructures.

We are investigating applications of our general scheme
in order to model real materials. We are also developing
more efficient �re�construction algorithms. There is a need
for a theoretical and numerical analysis of the energy thresh-
old of the algorithm, which is the aforementioned “accept-
able tolerance.” This quantity provides an indication of the
extent to which the algorithms have reproduced the target
structure and it is directly related to the nonuniqueness issue
of reconstructions �2–5�. Moreover, additional realizable ba-
sis functions are needed to construct a complete basis set.
Such work will be reported in our future publications.
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APPENDIX

The complementary error function fCE�r� is defined as

fCE�r� =
2

�

�

r/a

�

e−t2dt , �A1�

where r�0 and a is the effective correlation length. It is
easy to check that fCE�r� satisfies the known necessary con-
ditions collected in this paper except for Eq. �20�, which can
only be checked for a finite number of cases. Realizations of
the random medium associated with fCE�r� have been con-
structed using the Yeong-Torquato technique with very high
numerical precision. Thus, we believe fCE�r� to be a valid
candidate for a realizable scaled autocovariance function.
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FIG. 12. Combined scaled autocovariance function f�r� accord-
ing to Eq. �62� with coefficients 	1=0.75, 	2=0.25. Here a=20
�pixels�, A1=1, Ai=0�i�1�, a1=5 �pixels�, q1=10 �pixels�.
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FIG. 13. Constructed media with scaled autocovariance function
shown in Fig. 12. �a� Volume fraction of black pixels �1=0.1. �b�
Volume fraction of black pixels �1=0.3. �c� Volume fraction of
black pixels �1=0.5. The linear size of the systems N=200.
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